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Abstract—Functionally Graded Materials (FGMs) are widely used in many structural applications because of their high performance of heat resistant 
and also due to the superior properties they posseess compared to homogeneous material composed of similar constituents. Closed form solutions are 
already available for the analysis of plated FGM structures for simple loading and boundary conditions. Hence here the authors have developed an 
approximate solution for FGM plates using Spline Finite Strip Method (SFSM) which can be extended to complicated boundary conditions and loading. 
Power law idealization is used to show the variation of Young’s moduli along the thickness direction. The deflections are obtained using Classical Plate 
Theory.  

Index Terms— Classical Plate Theory, Exponential function, Functionally Graded Material, Power-law function, Sigmoid function, Spline Finite Strip 
Method, B3 splines 

——————————      —————————— 

1 INTRODUCTION

unctionally graded materials (FGM) are the advanced materials 
in the family of engineering composites made of two or more 
constituent phases with continuous and smoothly varying com-

position. These advanced materials with engineering gradients of 
composition, structure and/or specific properties in the preferred 
direction/orientation are superior to homogeneous material com-
posed of similar constituents [1]. Functionally graded materials 
(FGMs) are widely used in many structural applications such as aer-
ospace, nuclear, civil and automotive because of their high perfor-
mance of heat resistant. The concept of FGM, initially developed for 
super heat resistant materials to be used in space planes or nuclear 
fusion reactors, is now of interest to designers of functional materials 
for energy conversion, dental and orthopaedic implants, sensors and 
thermo-generators and wear resistant coatings. FGMs are also used 
for joining dissimilar materials. 

An FGM can be prepared by continuously changing the constitu-
ents of multi-phase materials in a pre-determined volume fraction of 
the constituent material. Due to the continuous change in material 
properties of an FGM, the interfaces between two materials disap-
pear but the characteristics of two or more materials of the composite 
are preserved. Subsequently the stress singularity at the interface of a 
composite can be eliminated and thus the bonding strength is en-
hanced [2], [3]. Because of the wide material variations and applica-
tions of FGMs, many research works have already been done for the 
bending and buckling analysis. 

 
 In this study, the Spline Finite Strip bending analysis of PFGM us-
ing the power-law idealisation technique is investigated using Clas-
sical Plate Theory. The material properties are varied continuously in 
the thickness direction according to a power-law distribution. The 
results are compared with the results of the closed form solution 
developed from Fourier Series Expansion by Chi & Chung [2]. 

2    FUNCTIONALLY GRADED MATERIALS 
2.1 General 
FGMs are microscopically non-homogenous materials in which the 
mechanical properties vary smoothly and continuously from one 
surface to the other. This is achieved by gradually varying the vol-
ume fraction of the constituent materials. Typically these materials 
are made from a mixture of ceramics and metal or a combination of 
different metals. The ceramic constituent of the material provides the 
high-performance resistance due to its low thermal conductivity. The 
ductile metal constituent, on the other hand, prevents fracture caused 
by stresses due to high temperature gradient in a very short period of 
time. They are now being regarded as one of the most promising 
candidates for future intelligent composites in many engineering 
structures.  

 
2.2 Mathematical Idealisation Techniques of FGM 
Although FGMs are highly heterogeneous, it will be very useful to 
idealize them as continua with their mechanical properties changing 
smoothly with respect to the spatial coordinates. The homogenization 
schemes are necessary to simplify their complicated heterogeneous 
microstructures inorder to analyse FGMs in an efficient manner. A 
typical FGM represents a particulate composite with a prescribed 
distribution of volume fractions of constituent phases. The material 
properties are generally assumed to follow gradation throughout the 
thickness in a continuous manner.The Poisson’s ratios of the FGM 

plates are assumed to be constant, but their Young’s moduli vary 

continuously throughout the thickness direction according to the 
volume fraction of constituents defined by power-law (PFGM), sig-
moid (SFGM), or exponential function (EFGM). Power-
law and exponential functions are commonly used to describe the 
variations of material properties of FGMs. However, in both power-
law and exponential functions, the stress concentrations appear in 
one of the interfaces in which the material is continuous but rapidly 
changing.These three types of variations/gradations are popular for 
the analysis of material properties. 

3    SPLINE FINITE STRIP METHOD 
 Although closed form analytical method may be possible in  
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simple cases of idealized structure and loading, various numerical    
approaches like FEM, CFSM, SFSM etc. are usually resorted to 
complex systems and loading conditions. The Finite Element Method 
(FEM) has been extensively used for the analysis of plated struc-
tures. The computational requirement of FEM, in terms of storage 
space and time is very high, especially in linear prismatic members 
wherein some of the elements have small width. Hence, this method 
has only limited application in the stability and non-linear analysis of 
linear prismatic members modeled using plates and shells, especially 
when iterative non-linear analysis is needed, as in optimum design. 
The Classical Finite Strip Method (CFSM), on the other hand, allows 
more efficient modeling of such prismatic members using strips as 
elements along the length of the member. This method works well 
for simple boundary conditions (simply supported, clamped, etc.), 
but fails to effectively deal with complex boundary conditions and 
partial and concentrated loads, since the trigonometric functions used 
to model displacements in the longitudinal direction are infinitely 
continuous. The continuity and discontinuity requirements can be 
satisfied by replacing the classical trigonometric function by a spline 
function as is done in Spline Finite Strip Method (SFSM).  

The spline function is defined as a piecewise polynomial of nth 
degree which is smoothly connected to the adjoining spline functions 
which has n-1 continuous derivatives. There is variety of splines 
namely natural spline, cardinal spline, basic spline etc. B3 spline 
(cubic basic) is most common and is continuous over only four con-
secutive sections. Equal and unequal spaced spline series have been 
used by many researchers to analyse thin and thick plate structures. 
The unequal splines are more efficient when the structure is subject-
ed to concentrated loads and reactions, when the support of members 
are either isolated or at irregular locations and when cut-outs are 
present. 

Spline finite strip has all the advantages of classical finite strip 
and there are additional merits also. The trigonometric series that is 
used in Classical Finite Strip Method (CFSM) is not the right ap-
proximation to model the bending behaviour. Since, the series being 
infinite in nature the accuracy will depend on number of terms cho-
sen and demands a harmonic analysis. In addition, these series can-
not be applied to generalized boundary conditions and loading condi-
tions. The B3 spline series do not suffer these shortcomings of 
CFSM. The B3 spline series is a piecewise cubic polynomial, which 
is an ideal approximation of the bending behaviour. Another proper-
ty of B3 spline is its localized behaviour that makes the stiffness ma-
trix highly banded. Owing to this property, incorporating the bound-
ary conditions is easy, and only three splines adjacent to the con-
straint need to be modified.  

4  PROBLEM FORMULATION 
 

4.1 Power law idealisation 
A typical ceramic-metal FGM plate is shown in Fig. 1.The volume 
fraction of the P-FGM is assumed to obey a power law function: 
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where p is the material parameter and h is the thickness of the plate.  
 
Once the local volume fraction g(z) has been defined, the mate-

rial properties of a P-FGM can be determined by the rule-of-mixture. 
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where E1 and E2 are the Young’s moduli of the lowest (z = h/2) and 
top surfaces (z = −h/2) of the FGM plate, respectively. 

 
 
 
 
 
 
 
 
 

 

 

 
4.2 Stiffness matrix formulation using classical plate theory 

The simplest Equivalent Single Layer (ESL) laminate theory is the 
Classical Plate Theory which is an extension of Kirchoff’s Plate 

Theory. Here both transverse shear and transverse normal stresses 
are neglected. The deformationis is entirely due to bending and in-
plane stretching. The normal stresses σx, σy and shear stress τxy acting 
in the XY plane are derived. The stress resultants are obtained by 
integrating stress along the thickness. Thus the axial forces and the 
bending moments are obtained in terms of coefficients Aij, Bij and 
Cij.  
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They are the stiffness matrix coefficients which are obtained by 
the integration of material properties of the FGM plate and are de-
fined as shown: 
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Fig. 1. A typical ceramic metal Functionally Graded Plate.  
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The effect of Poisson’s ratio in causing deformation of the plate 

is negligible. Hence the Poisson’s ratio is assumed as constant. On 

substituting (2) in (5), the stiffness matrix coefficients for PFGM 
plate is obtained as  
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Similarly all the other coefficients can be obtained. These stiffness 
matrix coefficients are used to derive the equilibrium equations 
which in turn gives the deflection of the FGM plate subjected to uni-
formly distributed load. 

4     RESULTS 

4.1 Square plate subjected to uniformly distributed load  
A square FGM plate of width to thickness ratio 50 is considered. The 
plate is simply supported on its four sides as shown in Fig.2 and is 
subjected to a uniformly distributed load of 1 kg/cm2. The Poisson’s 

ratio of the FGM plate is assumed to be constant in the whole plate. 
υ = 0.3. The Young’s modulus at the bottom surface of the FGM 
plate, E1 is 2.1x106, while that at the top surface of the FGM plate, E2 
varies with the ratio of E1/E2. The Young’s modulus at any point on 

the FGM plate varies continuously in the thickness direction based 
on the volume fraction of the constituents. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Due to the symmetry about the x- and y-axes, only one quarter of 

the full plate is considered for analysis. In the finite strip method, 5 
strips in the longitudinal direction are used to simulate the variation 
of deflection of the FGM plate. 

The SFSM results are obtained for values of E1=2.1x106 kg/cm2, 
E2=0.7x106 kg/cm2, a=b=100cm, h=2cm, υ=0.3, q0=1 kg/cm2, 
E1/E2=3 for PFGM. The SFSM results shows good agreement with 
the closed form solutions given by Chi& Chung (2006) which is 
shown in Fig. 4 and Fig. 5 for p=0.5 and p=2 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 shows the discretisatisation of one quarter of the Functionally 
Graded Plate into different strips. The knots and nodal lines present 
in the plate are clearly depicted in it. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Configuration of simply supported square FG plate. 

 

 

Fig. 5. Dimensionless deflection (w/h) of PFGM plate along the         
x direction for E1/E2=3 & p=2. 

 

 

Fig. 4. Dimensionless deflection (w/h) of PFGM plate along the       
x direction for E1/E2=3 & p=0.5. 

 

 

Fig. 3. Discretisation of Functionally Graded Plate. 
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SFSM results obtained for deflection with varying E1/E2 ratios for 
different x/a values for the PFGM plate by assuming the value of 
material parameter ‘p’ as 2. Fig. 6 shows the variation of E1/E2 val-
ues for both theoretical as well as Spline Finite Strip Method. This 
shows that both the results agree very well with maximum error less 
than 5%. 

 
 
 

 

 

 

 

 

 

 

5     CONCLUSION 
The Spline Finite Strip Method results using the power-law function 
agrees very well with the theoretical result developed for the deflec-
tion of the PFGM plate under uniformly distributed load. The results 
lead to the following conclusions: 
1) For values of ‘p=0.5’, the PFGM shows largest stiffness and 

gives less deflection. But for other values of ‘p’ stiffness is found 

to reduce causing increased deflection. 
2) As the value of ‘p’ increases the stiffness of the plate decreases due 

to the rapid variation of Young’s Modulus towards the lower sur-
face. 

3) The more E1/E2, the larger deflection ‘w’, because of less stiffness 
of the PFGM plate for larger E1/E2. 

REFERENCES 
[1] D.K. Jha, Tarun Kant, and R.K. Singh, “A Critical Review of Recent Re-

search on Functionally Graded Plates”, Composite Structures, submitted for 
publication, 2012. 

[2] Shyang-Ho Chi and Yen-Ling Chung, “Mechanical Behaviour of Function-
ally Graded Material Plates Under Transverse Load- Part I, Analysis”,  In-
ternational Journal of Solids and Structures, Vol. 43, No. 13, pp. 3657-
3674, 2006. 

[3] Shyang-Ho Chi and Yen-Ling Chung, “Mechanical Behaviour of Function-
ally Graded Material Plates Under Transverse Load- Part II, Numerical Re-
sults”,  International Journal of Solids and Structures, Vol. 43, No. 13, pp. 
3675-3691, 2006. 

[4] Bouazza Mokhtar, Tounsi Abedlouahed, Adda Bedia El Abbas, and 
Megueni Abdelkader, “Buckling Analysis of Functionally Graded Plates 
with Simply Supported Edges”, Leonardo Journal of Sciences, No. 15, pp. 
21-32, July-December 2009. 

[5] M. Kashtalyan, “Three Dimensional Elasticity Solution for Bending of 
Functionally Graded Rectangular Plates”, European Journal of Mechanics 
and Solids, Vol. 23, pp.853-864, 2004. 

[6] J.N. Reddy, “Mechanics of Laminated Composite Plates”, CRC Press, New 
York, 1997. 

[7] Serge Abrate, “Functionally Graded Plates Behave Like Homogenous 
Plates”, Composites Part B: Engineering, Vol. 39, No. 1, pp. 151-158, 2008. 

[8] Kyung-Su Na and Ji-Hwan Kim, “Three-Dimensional Thermal Buckling 
Analysis of Functionally Graded Materials”, Composites: Part B Engineer-
ing, Vol. 35, pp.429-43, 2004. 

[9] Huu-Tai Thai and Dong-Ho Choi, “An Efficient and Simple Refined Theory 
for Buckling Analysis of Functionally Graded Plates”, Applied Mathemati-
cal Modelling, Vol. 36, pp.1008-1022,2012 

[10] S.A.M. Ghannadpour, H.R. Ovesy, and M. Nassirnia, “Buckling Analysis of 
Functionally Graded Plates under Thermal Loadings using the Finite Strip 
Method”, Computer and Structue, article in press. 

[11] B.A. Samsam Shariat, R. Javaheri, and M.R. Eslami, “Buckling of Imperfect 
Functionally Graded Plates under In-plane Compressive Loading”, Thin 
Walled Structures, Vol. 43, pp.1020-1036, 2005. 

[12] B.A. Samsam Shariat and M.R. Eslami, “Buckling of Thick Functionally 
Graded Plates under Mechanical and Thermal Loads”, Composite Struc-
tures, Vol. 78, pp.433-439, 2007. 

[13] Majid Badiey and M.A. Kouchakzadeh, “Buckling of a Functionally Graded 

Plate (FGP) under Shear and In-plane Directional Loading”, 27th Interna-
tional Congress of the Aeronautical Sciences, 2010. 

[14] Tsung-Lin-Wu, K.K. Shukla and Jin H. Huang, “Post-Buckling Analysis of 
Functionally Graded Rectangular Plates”, Composite Structures, Vol. 81, 
pp. 1-10, 2007. 

[15] S. Wang and D.J. Dawe, “Spline Finite Strip Analysis of the Buckling and 
Vibration of Composite Prismatic Plate Structures”, International Journal of 
Mechanical Sciences, Vol. 39, No. 10, pp. 1161-1180, 1997. 

[16] S. Wang and D.J. Dawe, “Spline FSM Postbuckling Analysis of Shear-
Deformable Rectangular Laminates”, Thin-Walled Structures, Vol. 34, 
No.2, pp. 163-178, 1999. 

[17] H. Sheikh and M. Mukhopadhyay, “Geometric Nonlinear Analysis of Stiff-
ened Plates by the Spline Finite Strip Method”, Computers & Structures, 
Vol. 76, No.6, pp. 765-785, 2000. 

[18] R. Lafore, Object Oriented Programming in MICROSOFT C++, Galgotia 
Publications Pvt Ltd, NewDelhi, 2005. 

[19] C.S. Krishnamoorthy, Finite Element Analysis, Theory and Programming, 
Second Edition, Tata McGraw-Hill Publishing Company Limited, New 
Delhi, 1987. 

[20] J.H. Ahlberg, E.N. Nilson and J.L. Walsh, The theory of Splines and Their 
Applications, Academic Press, New York, 1967. 

[21] K.J. Bathe, Finite Element Procedures, Prentice Hall of India Private Lim-
ited, NewDelhi, 1997. 

[22] E. Balagurusamy, Object Oriented Programming with C++, Second Edi-
tion, Tata McGrawHill Publishing Company Limited, NewDelhi, 2005. 

[23] Y.K. Cheung and L.G. Tham, Finite Strip Method, CRC Press, New York, 
1998. 

[24] Y. K. Cheung, Finite Strip Method in Structural Analysis, Pergamon Press, 
Oxford, 1976. 

[25] P.M. Prenter, Splines and Variational Methods, John Wiley and Sons, 
NewYork, 1975. 

 

 

 

Fig. 6. Dimensionless deflection (w/h) of PFGM plate along the         
direction for different E1/E2 
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